Hits: 0
algebraic calculation 1 Prove that the vector from the viewpoint of a pinhole camera to the vanishing point (which is a point on the image plane) of a set of 3D parallel lines in space is parallel to the direction of that set parallel lines. Please show steps of your proof. Hint: You can either use geometric reasoning or algebraic calculation. If you choose to use geometric reasoning, you can use the fact that the projection of a 3D line in space is the intersection of its “interpretation plane” with the image plane. Here the interpretation plane (IP) is a plane passing through the 3D line and the center of projection (viewpoint) of the camera. Also, the interpretation planes of two parallel lines intersect in a line passing through the viewpoint, and the intersection line is parallel to the parallel lines. If you select to use algebraic calculation, you may use the parametric representation of a 3D line: P = P0 +tV, where P= (X,Y,Z)T is any point on the line (here T denote for transpose), P0 = (X0,Y0,Z0)T is a given fixed point on the line, vector V = (a,b,c)T represents the direction of the line, and t is the scalar parameter that controls the distance (with sign) between P and P0. algebraic calculation 2. Show that relation between any image point (xim, yim)T (in the form of (x1,x2,x3)T in projective space ) of a planar surface in 3D space and its corresponding point (Xw, Yw, Zw)T on the plane in 3D space can be represented by a 3×3 matrix. You should start from the general form of the camera model (x1,x2,x3)T = MintMext(Xw, Yw, Zw, 1)T, where the image center (ox, oy), the focal length f, the scaling factors( sx and sy), the rotation matrix R and the translation vector T are all unknown. Note that in the course slides and the lecture notes, I used a simplified model of the perspective project by assuming ox and oy are known and sx = sy =1, and only discussed the special cases of a plane. So you cannot directly copy those equations I used. Instead you should use the general form of the projective matrix, and the general form of a plane nx Xw + ny Yw + nz Zw = d. For Algebraic calculation Assignment Help please click here